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We present a key-exchange protocol that comprises two parties with chaotic dynamics that are mutually
coupled and undergo a synchronization process, at the end of which they can use their identical dynamical state
as an encryption key. The transferred coupling- signals are based nonlinearly on time-delayed states of the
parties, and therefore they conceal the parties’ current state and can be transferred over a public channel.
Synchronization time is linear in the number of synchronized digits �, while the probability for an attacker to
synchronize with the parties drops exponentially with �. To achieve security with finite � we use a network.
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The idea of using chaos for secure communication sys-
tems has been the focus of many research projects in the last
few years �1–5�. Although chaotic systems are linearly un-
stable and unpredictable, they can synchronize �6�, which
makes them promising candidates for constructing crypto-
graphic systems. However, in chaotic cryptographic systems
until now, the partners had to agree on some secret param-
eter, which somehow had to be transferred privately. After
this private agreement, the two chaotic systems synchronize
by exchanging signals over a public channel, which then can
be used to conceal the message. However, modern crypto-
graphic protocols construct secret keys over a public chan-
nel. Here we investigate whether such a key exchange is
possible using chaotic synchronization.

We present a chaotic system that constructs a secret key
using a public channel, i.e., a cryptographic key-exchange
protocol based on chaotic synchronization. In our approach,
each party uses a chaotic system. Both of the systems are
coupled by exchanging public signals in order to synchro-
nize. Soon after synchronization one of the chaotic variables
is used as an encryption key. Although an eavesdropper, lis-
tening to the communication channel, knows all the details
of the systems including the values of the parameters as well
as the signals transmitted, he does not manage to construct
the secret key.

The first method in constructing a secret key over a public
channel was developed in 1976 by Diffie and Hellmann. This
method is based on number theory, its complexity is polyno-
mial with the size of the key, and is the basis of almost all
modern encryption protocols. In view of applications in com-
munication by electronic circuits or lasers �5�, it would be
useful to find cryptographic systems based on continuous
signals, and with linear complexity. Our method uses chaotic
ordinary differential equations which are coupled by a few of
their internal variables. For a cryptographic application we
have to add two additional ingredients to the chaotic system:
nonlinearity and time delay of the transmitted signals.

The coupling leads to synchronization of the two ordinary
differential equations �ODEs�, and the partners use one of the
variables at some predefined time t as the secret encryption
key. Any eavesdropper is at a disadvantage in that he can
only listen but cannot influence the synchronization process
of the two partners. Therefore an attacker cannot find the

secret key by unidirectional coupling �7�. The difference be-
tween bidirectional coupling of the partners and unidirec-
tional coupling of an attacker is the essence of our crypto-
system.

Because the coupling signals are transferred publicly, they
must be sophisticated enough to hide the state of the systems.
We used coupling signals that are based nonlinearly on time-
delayed values of the systems, and therefore conceal the sys-
tem’s current state, while still enabling synchronization.
Time-delayed coupling has been recently studied �8,9� and is
also observed in systems such as coupled lasers and spiking
neurons.

Let us now describe the system in more detail. Consider
two Lorenz systems, A and B, coupled by their x value,

dxA

dt
= 10�yA − xA� + K�fB�t� − fA�t�� ,

dxB

dt
= 10�yB − xB� + K�fA�t� − fB�t�� ,

�1�
dyA

dt
= 28xA − yA − xAzA,

dyB

dt
= 28xB − yB − xBzB,

dzA

dt
= xAyA −

8

3
zA,

dzB

dt
= xByB −

8

3
zB,

where K is the coupling strength between the two systems,
and f�t� is a nonlinear function based on x at previous time
steps: f�t�= f(x�t−�1� ,x�t−�2�…).

Each party initializes its variables with secret random val-
ues. Use of x�t−�� as the coupling signal is not secure, there-
fore we suggest using a nonlinear function of the variable x
at previous time steps, f�t�, as described above. Which non-
linear function f should be used? On one hand, f�t� should
enable synchronization. If we choose a signal that is too far
from the x value, e.g., x�t−�� for a large time delay �, the
systems will not synchronize. On the other hand, if we
choose a function f which is linear in x�t−��, it will be easy
to reveal the state of the system. Therefore, we add a small
perturbation to the main signal, constructed from two de-
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layed values x�t1� and x�t2�, where t1= t−�1 and t2= t−�2,

f�t� = x�t1� + sgn�x�t1��A�x�t1� − x�t2��2, �2�

where sgn�x�t1�� ensures an average mean for the perturba-
tion around x�t1�.

Our numerical simulations show that synchronization is
possible up to the critical value Ac�0.36, for �1=0.1 and
�2=0.05. When approaching this value there is a probability
close to 1 that the systems’ variables diverge.

We find that with a time-delayed signal, there is a nonzero
probability for synchronization only in a limited range Kmin
�K�Kmax. For the parameters of Fig. 1, for instance, Kmin
�4 and Kmax�11.5. Small values of the coupling strength K
are too weak to achieve synchronization. On the other hand,
large values of K lead to a nonzero probability that the vari-
ables of the Lorenz systems �x ,y ,z� diverge. Above Kmax all
initial states diverge. Also, to achieve synchronization, the
time delay must not be too large. We find a maximal value of
�i��max�0.12. Synchronization is therefore possible only in
a limited range of model parameters. It turns out that this is
essential for the cryptographic application.

In the following we consider an attacker E who knows all
the details of the model and listens to any communication
between the parties A and B. The first attack strategy we
discuss is an attacker who uses the same Lorenz system as
the two parties, follows their steps throughout the process,
and also uses the same signal fA�t� in order to synchronize.

dxE

dt
= 10�yE − xE� + K�fA�t� − fE�t�� . �3�

We name this attack the “regular following attack” �RFA�.
The RFA may use a larger coupling strength K to increase his
tracing steps �6�.

Therefore, we have to investigate the behavior of the bi-
directionally coupled A /B system and the unidirectionally
coupled A /E system as the function of the coupling strength
K. A quantitative measure of synchronization is given by the
conditional Lyapunov exponents �CLE�. Synchronization is
possible only if all the CLE of the systems are negative �1�.

Figure 1 shows the largest CLE of the parties �squares� and
the RFA attacker �triangles�.

The standard technique for measuring the CLE is not ap-
plicable in our case, since one has to approximate the time-
delayed values for the parties and the attacker. To overcome
this difficulty we use the following “self-consistent” proce-
dure, which is a variation on the standard method. The par-
ties start from a point on the attractor, with a small distance
d0=10−8 between them. We assume a CLE and then generate
the appropriate time-delayed values. Given the time-delayed
values and the current state of the parties, the CLE can now
be calculated. The correct CLE is the one for which the
measured CLE matched the assumed CLE used for generat-
ing the time-delayed values. A similar procedure is used for
estimating the CLE of the attacker.

Figure 1 indicates that the CLE of the parties is negative
for 5�K�11, while the CLE of the attacker is positive in
this regime. Note that for K�11.5, the x values �and also y
and z� of the parties and the attacker diverge. In practice we
noticed that the most successful attacker is the one using K
=14, while the attacker bounds his x values to �x��22 so as
not to diverge. Measuring the CLE can be done only when
the systems do not diverge; for this reason the values in Fig.
1 are limited and the CLE decreases with K, because the
diverging cases are not considered in the measuring.

Figure 2 displays a semilog plot of the RFA attacker’s
success probability versus �, the number of digits he man-
ages to synchronize, when the parties are synchronized by 14
digits �triangles� and 30 digits �squares�. His success prob-
ability drops exponentially with �, whereas the synchroniza-
tion time of the parties grows linearly with �, as shown in
the inset of Fig. 2. Therefore the parties can still use most of
their digits for the encryption key.

These results show that chaotic ODEs can be used to gen-
erate a secret key over a public channel. There is an interplay
between either the positive CLE or the lack of an attractor
�the divergence of the parameters of the attacker� and the
security of our cryptosystem.

We have seen that the attacker cannot synchronize with
the two parties. However, he may try to analyze the ex-

FIG. 1. The conditional Lyapunov exponent vs K for parties
�squares� and the attacker �triangles�, �1=0.1,�2=0.05, and A=0.3.

FIG. 2. A semilog plot of the attacker’s success probability vs �
for parties synchronizing 14 digits �triangles� and 30 digits
�squares�. The parties use K=8 and the attacker uses K=14. Inset:
The parties’ synchronization time vs number of synchronized digits,
with K=8. For both graphs �1=0.1,�2=0.05, and A=0.3.
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changed signals fA�t� in order to calculate the variable xA�t�.
The following attack, named the embedded signal attack
�ESA�, tries to analyze the transmitted signal by embedding
the signal in a space, defined by signals transmitted in dif-
ferent time steps �6,12�.

A space F= �f�t� , f�t�� , f�t��¯ � is defined, which uses a
sequence of f values from different time steps t , t�, etc. The
attacker tries to map the F space to corresponding x values of
the system. If for a small window in F space there is a small
corresponding range of x values, then this mapping is pos-
sible. Yet if the distribution of x values corresponding to a
small window in F space is wide, then x is not uniquely
defined and mapping is not possible.

Figure 3 shows the distribution of x values for a window
of size 0.02 in F space, F�f�t� , f�t−0.3� , f�t−0.9��. The dis-
tribution of x values is peaked, therefore the ESA is success-
ful for a infinite �. However, for infinite � one has to de-
crease the window’s size accordingly. The probability of
finding a point in the dynamics belonging to such a tiny
window decreases exponentially with �, and therefore this
attack reduces to a brute force attack. Hence, the presented
cryptosystem is also robust against the ESA attack.

In order to increase the key space and to decrease the
precision of the calculation we investigated an extension of
the system to a network of N Lorenz equations. Now each
party has a ring of Lorenz systems which are coupled, as
shown in Fig. 3. We tried other topologies as well, but it
turned out that the cyclic network yields the highest security.
The network generates a key of size �N and the security is a
function of network size N.

The two cyclic networks A and B are coupled: each node
is coupled to a parallel node in the other network and to its
preceding neighbor by its x value. The two networks ex-
change N signals, f�xi�i=1,… ,N, at every time step, and use
the following dynamics:

dxA
i

dt
= 10�yA − xA� + K�fB

i �t� − fA
i �t�� + W�gA

i+1�t� − gA
i �t�� ,

�4�

and similarly for system B, where f i�t� is given by Eq. �2� for
node i in the network. K is the strength of the coupling
between systems A and B, and W is the strength of the inner
coupling �“weights”�. For simplicity we use g�x�= f�x� �see
Eq. �2�� with A=0.1.

Our simulations show that the two systems reach a state
of synchronization in which, although the values of the two
networks are identical, there are no clusters among the nodes
of each network and they are desynchronized �if the inner
coupling strength W is not too strong�. Note that although the
systems now exchange N signals, the signal’s size is small
because we use a small �.

If the parties synchronize a finite number of digits, an-
other modification must be made in the model to increase
security. The attacker’s probability of divergence grows with
A, therefore we can enhance the security even further by
using a dynamic amplitude A in Eq. �2�, in the following
way:

A�t� =
1

B�fA�t� − fB�t��� + C
, �5�

where B and C can be constants, or stochastic numbers fol-
lowing a known protocol. At first A is relatively low, so that
the parties will start coming closer. Gradually they get closer
and A grows so that synchronization becomes more difficult.
Because the attacker’s probability to diverge is higher, using
a dynamic prefactor A affects him much more than it does
the parties; even if he bounds his values �x ,y ,z� so as not to
diverge, his success probability is greatly reduced.

The RFA attacker tries to synchronize with the parties.
When is he considered successful? When he synchronizes all
the nodes completely? Synchronizing only part of them is
probably enough. We set a very soft criterion and considered

FIG. 3. The ESA attack on one node, N=1. The graph shows the
distribution of x values for a window in F space, F�f�t� , f�t
−0.3� , f�t−0.9��, with window edge of 0.02. For dynamic A as de-
fined in Eq. �5� �dashed line� and static A=0.01 �black line�. Inset:
Schematic figure of the two coupled cyclic networks. Each node
represents a Lorenz system and is coupled to the preceding node,
and to a parallel node in the other network.

FIG. 4. Semilog plot of the probability of the RFA attacker to
synchronize one node, vs N. Inset: The parties’ synchronization
time vs N. For both graphs the parties use K=8 and W=2 and the
attacker uses K=14 and W=2,�=1.5,B=200, and C is randomly
chosen in the range �3,4�.
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a successful attacker as one who manages to synchronize at
least one node by only four digits, while the parties synchro-
nize all the nodes by seven digits. Albeit the soft criterion,
we observed that the probability for an attacker to succeed
decays exponentially with N, as demonstrated in Fig. 4. The
parties’ synchronization time on the other hand, scales with
N, as displayed in the inset of Fig. 4.

Using a network increases the security against RFA. Ev-
ery Lorenz system in the attacker’s network has a probability
to diverge. When using a network, if there is a node that
diverges, it also affects its neighbors and they too start to
diverge. It is like damage spreading. The attacker finds it
difficult to prevent this from occurrence because if he cuts
out even one diverging node, he is left with an open chain.

The ESA attacker is relevant only to the case of finite �.
We find that using a dynamic A as defined in Eq. �5� in-
creases the security against ESA even for N=1. Figure 3
shows the distribution of x values for a window in F space,
F�f�t� , f�t−0.3� , f�t−0.9��. When using a static A, the distri-
bution of x values is peaked, therefore the ESA is successful
for a finite �. However, when using a dynamic stochastic A,
the distribution of x values corresponding to a small window
in F space is wide. Because A is dynamic and stochastic,

there exist many close trajectories of f that lead to different x
values.

Note that another type of attack suggested for crypto-
graphic systems based on synchronization of neural networks
�10� is irrelevant to this system. The “majority attack” is
based on an ensemble of cooperating attackers �11�. Cooper-
ating attackers are ineffective here because of the linear in-
stability of the dynamics.

To conclude, the ability of two chaotic systems to syn-
chronize when coupled by a time-delayed signal is used to
create a cryptographic system. The signals do not reveal the
state of the system, yet still enable synchronization. One
coupled Lorenz pair is secure when controlling �. A secure
cryptographic system is constructed by weakly coupling N
Lorenz systems, enabling the use of less precision in the
calculations. Several factors contribute to the security of this
system: the linear instability of the dynamics, the fact that
the two parties are mutually coupled while the attacker is
one-way coupled, and the structure of the network which
allows individual defects to affect the entire system.
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